A Fast Incremental Learning Algorithm of RBF Networks with Long-Term Memory

نویسندگان

  • Keisuke Okamoto
  • Seiichi Ozawa
  • Shigeo Abe
چکیده

To avoid the catastrophic interference in incremental learning, we have proposed Resource Allocating Network with Long Term Memory (RAN-LTM). In RAN-LTM, not only a new training sample but also some memory items stored in Long-Term Memory are trained based on a gradient descent algorithm. In general, the gradient descent algorithm is usually slow and can be easily fallen into local minima. To solve these problems, we propose a fast incremental learning algorithm of RAN-LTM, in which its centers are not trained but selected based on output errors. This model does not need so much memory capacity and it also realizes robust incremental learning ability. To verify these characteristics of RAN-LTM, we apply it to two function approximation problems: one-dimensional function approximation and prediction of Mackey-Glass time series. From the experimental results, it is verified that the proposed RANLTM can learn fast and accurately without large main memory unless incremental learning is conducted over a long period of time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

An Autonomous Incremental Learning Algorithm for Radial Basis Function Networks

In this paper, an incremental learning model called Resource Allocating Network with Long-Term Memory (RAN-LTM) is extended such that the learning is conducted with some autonomy for the following functions: 1) data collection for initial learning, 2) data normalization, 3) addition of radial basis functions (RBFs), and 4) determination of RBF centers and widths. The proposed learning algorithm...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...

متن کامل

Forecasting the Tehran Stock market by Machine ‎Learning Methods using a New Loss Function

Stock market forecasting has attracted so many researchers and investors that ‎many studies have been done in this field. These studies have led to the ‎development of many predictive methods, the most widely used of which are ‎machine learning-based methods. In machine learning-based methods, loss ‎function has a key role in determining the model weights. In this study a new loss ‎function is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003